
deep-ei

Oct 28, 2020

Introduction:

1 What’s here? 1
1.1 Introduction . 1
1.2 deep-ei Module . 4

2 Indices and tables 11

Python Module Index 13

Index 15

i

ii

CHAPTER 1

What’s here?

This code accompanies the paper Examining the Causal Structures of Artificial Neural Networks Using Information
Theory.

1.1 Introduction

1.1.1 Installation

The simplest way to install the deep_ei module is with:

pip install deep-ei

Becaues pytorch can be fragile, it is recommended that you install and test pytorch before installing deep-ei
(such as with conda install pytorch -c pytorch). To install deep-ei directly from the GitHub reposi-
tory:

git clone https://github.com/EI-research-group/deep-ei.git
cd deep-ei
pip install .

Basic tests can be executed with:

python setup.py test

Note that we have also provided an anaconda environment file. You can use it to create a new environment with
deep-ei and all its dependencies:

conda env create --file environment.yml

1

https://insert_arxiv_link
https://insert_arxiv_link

deep-ei

1.1.2 Examples

Here are some basic examles:

import torch
import torch.nn as nn

from deep_ei import topology_of, ei, ei_parts, sensitivity, ei_parts_matrix

device = torch.device('cuda' if torch.cuda.is_available() else 'cpu')
dtype = torch.float32
torch.set_default_dtype(dtype)

network = nn.Linear(5, 5, bias=False).to(device)
top = topology_of(network, input=torch.zeros((1, 5)).to(device))

EI = ei(network, top,
samples=int(1e5),
batch_size=100,
in_range=(0, 1),
in_bins=8,
out_range=(0, 1),
out_bins=8,
activation=nn.Sigmoid(),
device=device)

This will compute the EI of the 5 -> 5 dense layer network using a sigmoid activation and 100000 samples.

The function topology_of creates a networkx graph representing the connectivity of the network. ei can infer
argument values using this graph, such as the ranges of the inputs and outputs of the layer and its activation function:

network = nn.Sequential(
nn.Linear(20, 10, bias=False),
nn.Sigmoid(),
nn.Linear(10, 5, bias=False),
nn.Tanh()

)
top = topology_of(network, input=torch.zeros((1, 20)).to(device))

layer1, _, layer2, _ = network

EI_layer1 = ei(layer1, top,
samples=int(1e5),
batch_size=100,
in_range=(0, 1),
in_bins=8,
out_bins=8,
device=device)

EI_layer2 = ei(layer2, top,
samples=int(1e5),
batch_size=100,
in_bins=8,
out_bins=8,
device=device)

Which will use an activation of nn.Sigmoid and an out_range of (0, 1) for the first layer and an activation
of nn.Tanh and an out_range of (-1, 1) for the second layer. Note that we have to specify an in_range for
the first layer.

2 Chapter 1. What’s here?

deep-ei

EI_parts can be computed similarly:

import torch
import torch.nn as nn

from deep_ei import topology_of, ei, ei_parts

device = torch.device('cuda' if torch.cuda.is_available() else 'cpu')
dtype = torch.float32
torch.set_default_dtype(dtype)

network = nn.Linear(5, 5, bias=False).to(device)
top = topology_of(network, input=torch.zeros((1, 5)).to(device))

EI = ei_parts(network, top,
samples=int(1e5),
batch_size=100,
in_range=(0, 1),
in_bins=8,
out_range=(0, 1),
out_bins=8,
activation=nn.Sigmoid(),
device=device)

With ei_parts, you can specify a threshold instead of setting a manual number of samples (indeed this is the
default behavior of ei_parts, with default threshold of 0.05). The function will increase the number of samples it
uses until EI_parts levels off (characterized by whether EI_parts will change by less than threshold of its current
value even if we doubled the number of samples):

network = nn.Linear(10, 10, bias=False).to(device)
top = topology_of(network, input=torch.zeros((1, 10)).to(device))

EI = ei_parts(network, top,
threshold=0.05,
batch_size=100,
in_range=(0, 1),
in_bins=64,
out_range=(0, 1),
out_bins=64,
activation=nn.Sigmoid(),
device=device)

You can also measure the sensitivity of a layer like so:

network = nn.Linear(10, 10, bias=False).to(device)
top = topology_of(network, input=torch.zeros((1, 10)).to(device))

sensitivity = sensitivity(network, top,
samples=1000,
batch_size=100,
in_range=(0, 1),
in_bins=64,
out_range=(0, 1),
out_bins=64,
activation=nn.Sigmoid(),
device=device)

If you want to compute the EI of each edge in a layer (giving you each term that is summed to get EI_parts), use the

1.1. Introduction 3

deep-ei

ei_parts_matrix function:

network = nn.Linear(20, 10, bias=False).to(device)
top = topology_of(network, input=torch.zeros((1, 20)).to(device))

EI = ei_parts_matrix(network, top,
samles=50000,
batch_size=100,
in_range=(0, 1),
in_bins=64,
out_range=(0, 1),
out_bins=64,
activation=nn.Sigmoid(),
device=device)

Which will return a 20 x 10 matrix where the rows correspond with in-neurons and the columns correspond with
out-neurons.

1.1.3 Ideas for future experiments

We’d love for people to use and expand on this code to make new discoveries. Here are some questions we haven’t
looked into yet:

• How does dropout effect the EI of a layer? In otherwise identical networks, does dropout increase or decrease
the EI of the network layers?

• What can EI tell us about generalization? Does EI evolve in the causal plane in different ways when a network
is memorizing a dataset vs generalizing? To test this, train networks on some dataset as you would normally,
but then randomize the labels in the training dataset and train new networks. This label randomization will force
the network to memorize the dataset.

• On harder tasks, where deep networks are required (in MNIST and Iris, which we studied, it is unnecessary that
networks be deep for them to achieve good acuracy), do the hidden layers differentiate in the causal plane?

• Can EI be measured in recurrent networks? How would this work?

1.1.4 Contributing & Questions

We’d welcome feedback and contributions! Feel free to email me at eric.michaud99@gmail.com if you have
questions about the code.

1.2 deep-ei Module

deep_ei.topology_of(model, input)
Get a graph representing the connectivity of model.

Because PyTorch uses a dynamic computation graph, the number of activations that a given module will return
is not intrinsic to the definition of the module, but can depend on the shape of its input. We therefore need to
pass data through the network to determine its connectivity.

This function passes input into model and gets the shapes of the tensor inputs and outputs of each child
module in model, provided that they are instances of VALID_MODULES. It also finds the modules run before
and after each child module, provided they are in VALID_ACTIVATIONS.

Parameters

4 Chapter 1. What’s here?

deep-ei

• model (nn.Module) – feedforward neural network

• input (torch.tensor) – a valid input to the network

Returns

representing connectivity of model.

Each node of the returned graph contains a dictionary:

{
"input": {"activation": activation module, "shape": tuple},
"output": {"activation": activation module, "shape": tuple}

}

Return type nx.DiGraph

Examples

>>> network = nn.Sequential(nn.Linear(42, 20),
nn.Sigmoid(),
nn.Linear(20, 10))

>>> top = topology_of(network, input=torch.zeros((1, 42)))
>>> layer1, _, layer2 = network
>>> top.nodes[layer1]['output']['activation']
nn.Sigmoid instance
>>> top.nodes[layer1]['input']['shape']
(1, 42)

deep_ei.ei(layer, topology, threshold=0.05, samples=None, batch_size=20, in_layer=None,
in_range=None, in_bins=64, out_range=None, out_bins=64, activation=None, de-
vice=’cpu’)

Computes the vector effective information of neural network layer layer. By a “layer”, we mean the function
defined by the composition of some specified sequence of layers in the network:

𝐸𝐼(𝐿1 → 𝐿2) = 𝐼(𝐿1;𝐿2) | 𝑑𝑜(𝐿1 = 𝐻max)

Parameters

• layer (nn.Module) – a module in topology

• topology (nx.DiGraph) – topology object returned from topology_of function

• threshold (float) – used to dynamically determine how many samples to use.

• samples (int) – if specified (defaults to None), function will manually use this many
samples, which may or may not give good convergence.

• batch_size (int) – the number of samples to run layer on simultaneously

• in_layer (nn.Module) – the module in topology which begins our ‘layer’. By de-
fault is the same as layer.

• in_range (tuple) – (lower_bound, upper_bound), inclusive. By default determined
from topology

• in_bins (int) – the number of bins to discretize in_range into for MI calculation

• out_range (tuple) – (lower_bound, upper_bound), inclusive, by default determined
from topology

• out_bins (int) – the number of bins to discretize out_range into for MI calculation

1.2. deep-ei Module 5

deep-ei

• activation (function) – the output activation of layer, by defualt determined from
topology

• device – ‘cpu’ or ‘cuda’ or torch.device instance

Returns an estimate of the vector-EI of layer layer

Return type float

deep_ei.ei_parts(layer, topology, threshold=0.05, samples=None, extrapolate=False, batch_size=20,
in_layer=None, in_range=None, in_bins=64, out_range=None, out_bins=64, activa-
tion=None, device=’cpu’)

Computes EI_parts of neural network layer layer. By a “layer”, really mean the edges connecting two layers
of neurons in the network. The EI_parts EI of these connections is defined:

𝐸𝐼𝑝𝑎𝑟𝑡𝑠(𝐿1 → 𝐿2) =
∑︁

(𝐴∈𝐿1,𝐵∈𝐿2)

𝐼(𝑡𝐴, 𝑡𝐵) | 𝑑𝑜(𝐿1 = 𝐻max)

Parameters

• layer (nn.Module) – a module in topology

• topology (nx.DiGraph) – topology object returned from topology_of function

• threshold (float) – used to dynamically determine how many samples to use.

• samples (int) – if specified (defaults to None), function will manually use this many
samples, which may or may not give good convergence.

• extrapolate (bool) – if True, then evaluate EI at several points and then fit a curve to
determine asymptotic value.

• batch_size (int) – the number of samples to run layer on simultaneously

• in_layer (nn.Module) – the module in topology which begins our ‘layer’. By de-
fault is the same as layer.

• in_range (tuple) – (lower_bound, upper_bound), inclusive, by default determined from
topology

• in_bins (int) – the number of bins to discretize in_range into for MI calculation

• out_range (tuple) – (lower_bound, upper_bound), inclusive, by default determined
from topology

• out_bins (int) – the number of bins to discretize out_range into for MI calculation

• activation (function) – the output activation of layer, by defualt determined from
topology

• device – ‘cpu’ or ‘cuda’ or torch.device instance

Returns an estimate of the EI of layer layer

Return type float

deep_ei.ei_parts_matrix(layer, topology, samples=None, batch_size=20, in_layer=None,
in_range=None, in_bins=64, out_range=None, out_bins=64, activa-
tion=None, device=’cpu’)

Computes the EI of all A -> B connections of neural network layer layer.

The EI of the connection A -> B is defined as:

𝐸𝐼(𝐴 → 𝐵) = 𝐼(𝑡𝐴, 𝑡𝐵)|𝑑𝑜(𝐿1 = 𝐻max)

6 Chapter 1. What’s here?

deep-ei

where neuron A is in layer L_1. This is the mutual information between A’s activation and B’s activation when
all the other neurons in L_1 are firing randomly (independently and uniformly in their activation output range).

Parameters

• layer (nn.Module) – a module in topology

• topology (nx.DiGraph) – topology object returned from topology_of function

• threshold (float) – used to dynamically determine how many samples to use.

• samples (int) – if specified (defaults to None), function will manually use this many
samples, which may or may not give good convergence.

• extrapolate (bool) – if True, then evaluate EI at several points and then fit a curve to
determine asymptotic value.

• batch_size (int) – the number of samples to run layer on simultaneously

• in_layer (nn.Module) – the module in topology which begins our ‘layer’. By de-
fault is the same as layer.

• in_range (tuple) – (lower_bound, upper_bound), inclusive, by default determined from
topology

• in_bins (int) – the number of bins to discretize in_range into for MI calculation

• out_range (tuple) – (lower_bound, upper_bound), inclusive, by default determined
from topology

• out_bins (int) – the number of bins to discretize out_range into for MI calculation

• activation (function) – the output activation of layer, by defualt determined from
topology

• device – ‘cpu’ or ‘cuda’ or torch.device instance

Returns A matrix whose[A][B]th element is the EI from A -> B

Return type np.array

deep_ei.sensitivity(layer, topology, samples=500, batch_size=20, in_layer=None, in_range=None,
in_bins=64, out_range=None, out_bins=64, activation=None, device=’cpu’)

Computes the sensitivity of neural network layer layer.

Note that this does not currently support dynamic ranging or binning. There is a good reason for this: because
the inputs we run through the network in the sensitivity calculation are very different from the noise run though
in the EI calculation, each output neuron’s range may be different, and we would be evaluating the sensitivity
an EI using a different binning. The dynamic ranging and binning supported by the EI function should be used
with great caution.

𝑆𝑒𝑛𝑠𝑖𝑡𝑖𝑣𝑖𝑡𝑦(𝐿1 → 𝐿2) =
∑︁

(𝐴∈𝐿1,𝐵∈𝐿2)

𝐼(𝑡𝐴, 𝑡𝐵) | 𝑑𝑜(𝐴 = 𝐻max)

Parameters

• layer (nn.Module) – a module in topology

• topology (nx.DiGraph) – topology object returned from topology_of function

• samples (int) – the number of noise samples to run through layer

• batch_size (int) – the number of samples to run layer on simultaneously

• in_layer (nn.Module) – the module in topology which begins our ‘layer’. By de-
fault is the same as layer.

1.2. deep-ei Module 7

deep-ei

• in_range (tuple) – (lower_bound, upper_bound), inclusive, by default determined from
topology

• in_bins (int) – the number of bins to discretize in_range into for MI calculation

• out_range (tuple) – (lower_bound, upper_bound), inclusive, by default determined
from topology

• out_bins (int) – the number of bins to discretize out_range into for MI calculation

• activation (function) – the output activation of layer, by defualt determined from
topology

• device – ‘cpu’ or ‘cuda’ or torch.device instance

Returns an estimate of the sensitivity of layer layer

Return type float

deep_ei.sensitivity_matrix(layer, topology, samples=500, batch_size=20, in_layer=None,
in_range=None, in_bins=64, out_range=None, out_bins=64, activa-
tion=None, device=’cpu’)

Computes the sensitivitites of each A -> B connection of neural network layer layer.

Note that this does not currently support dynamic ranging or binning. There is a good reason for this: because
the inputs we run through the network in the sensitivity calculation are very different from the noise run though
in the EI calculation, each output neuron’s range may be different, and we would be evaluating the sensitivity
and EI using a different binning. The dynamic ranging and binning supported by the EI function should be used
with great caution.

𝑆𝑒𝑛𝑠𝑖𝑡𝑖𝑣𝑖𝑡𝑦(𝐴 → 𝐵) = 𝐼(𝑡𝐴, 𝑡𝐵) | 𝑑𝑜(𝐴 = 𝐻max)

where neuron A is in layer L_1. This is the mutual information between A’s activation and B’s activation when
A is firing randomly (uniformly) and all the other neurons in L_1 are outputing 0 (not firing).

Parameters

• layer (nn.Module) – a module in topology

• topology (nx.DiGraph) – topology object returned from topology_of function

• samples (int) – the number of noise samples run through layer

• batch_size (int) – the number of samples to run layer on simultaneously

• in_layer (nn.Module) – the module in topology which begins our ‘layer’. By de-
fault is the same as layer.

• in_range (tuple) – (lower_bound, upper_bound), inclusive, by default determined from
topology

• in_bins (int) – the number of bins to discretize in_range into for MI calculation

• out_range (tuple) – (lower_bound, upper_bound), inclusive, by default determined
from topology

• out_bins (int) – the number of bins to discretize out_range into for MI calculation

• activation (function) – the output activation of layer, by defualt determined from
topology

• device – ‘cpu’ or ‘cuda’ or torch.device instance

Returns A matrix whose[A][B]th element is the sensitivity from A -> B

Return type np.array

8 Chapter 1. What’s here?

deep-ei

deep_ei.vector_and_pairwise_ei(layer, topology, samples=None, batch_size=20, in_layer=None,
in_range=None, in_bins=64, out_range=None, out_bins=64,
activation=None, device=’cpu’)

Returns (vector_ei, pairwise_ei), both computed with the same samples.

deep_ei.eis_between_groups(layer, topology, groups, samples=None, batch_size=20,
in_layer=None, in_range=None, in_bins=64, out_range=None,
out_bins=64, activation=None, device=’cpu’)

Computes the EI between subsets of nodes specified with groups.

Parameters

• layer (nn.Module) – a module in topology

• topology (nx.DiGraph) – topology object returned from topology_of function

• samples (int) – use this many samples, which may or may not give good convergence.

• groups (list) – list of tuples of tuples. For instance: [((1, 2, 3), (1,))] will compute
vector-EI between neurons 1, 2, and three in the in-layer (as a group) and neuron 1 in the
out layer.

• batch_size (int) – the number of samples to run layer on simultaneously

• in_layer (nn.Module) – the module in topology which begins our ‘layer’. By de-
fault is the same as layer.

• in_range (tuple) – (lower_bound, upper_bound), inclusive. By default determined
from topology

• in_bins (int) – the number of bins to discretize in_range into for MI calculation

• out_range (tuple) – (lower_bound, upper_bound), inclusive, by default determined
from topology

• out_bins (int) – the number of bins to discretize out_range into for MI calculation

• activation (function) – the output activation of layer, by defualt determined from
topology

• device – ‘cpu’ or ‘cuda’ or torch.device instance

Returns an estimate of the vector-EI of layer layer

Return type float

1.2. deep-ei Module 9

deep-ei

10 Chapter 1. What’s here?

CHAPTER 2

Indices and tables

• genindex

• modindex

• search

11

deep-ei

12 Chapter 2. Indices and tables

Python Module Index

d
deep_ei, 9

13

deep-ei

14 Python Module Index

Index

D
deep_ei (module), 4–9

E
ei() (in module deep_ei), 5
ei_parts() (in module deep_ei), 6
ei_parts_matrix() (in module deep_ei), 6
eis_between_groups() (in module deep_ei), 9

S
sensitivity() (in module deep_ei), 7
sensitivity_matrix() (in module deep_ei), 8

T
topology_of() (in module deep_ei), 4

V
vector_and_pairwise_ei() (in module deep_ei),

8

15

	What’s here?
	Introduction
	deep-ei Module

	Indices and tables
	Python Module Index
	Index

